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ABSTRACT 
 
In the present paper, a hybrid , variational, user-controlled, 3D mesh smoothing algorithm is proposed for orphaned 
shell meshes. The smoothing model is based on a variational combination of energy and equi-potential minimization 
theories. A variety of smoothing techniques for predicting a new location for the node-to-smooth are employed. Each 
node is moved according to a specific smoothing algorithm so as to keep element included angles, skew and distortion 
to a minimum. The variational smoother selection logic is based on nodal valency and element connectivity pattern of 
the node to smooth. Results show its consistency with both quadrilateral and quad-dominant meshes with a significant 
gain over conventional Laplacian schemes in terms of mesh quality, stability, user control and flexibility. 
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1. INTRODUCTION 

 

With a very strong legacy of finite element data 
models, in most engineering industries, more and 
more legacy FEM data is being read in as building 
blocks for new designs. This is fast changing the 
engineering design world to an analysis-driven design 
as opposed to traditional CAD-based design.  

 

In this light, one of the biggest challenges that the 
designer faces today is to create geometry from legacy  
FEM data that is partially altered. The first step 
towards building surfaces or geometry abstractions 
from the input mesh is to smooth shell meshes in 3D  
space. Very few 3D smoothers, known today, can 
meet this challenge. Such a smoother could also be 
looked at as a preliminary "mesh morphing" 
technique. 

 

 2. PAST RESEARCH 
 

 

2.1 Laplacian Schemes 
The simplest mesh smoothing technique is Laplacian 
smoothing where a node is moved to the centroid of its 
neighboring vertices [14,12 5]. This method operates 
heuristically, and has no control on mesh quality and 
often throws nodes outside concave domains 
producing inverted or invalid elements. 
 
2.2 Laplace Variants  
Several variants of the Laplacian smoothing technique 
include "smart " Laplacian methods [6, 12] where 
element distortion metrices are checked before the 
node is moved. Length or area weighted Laplacian 
methods [12] are able to influence repositioning with 
initial location. In concave domains, however, these 
techniques still fail to produce stable meshes. 
Sometimes, area weighted methods help sense 
inverted elements and can be leveraged by smart 
Laplacian approaches to prevent moving such nodes. 
Haber et al [9] proposed a family of Isoparametric-
Laplacian mesh control techniques, meant specially 

for transfinite meshes. These schemes tend to produce 
better skewed quadrilaterals but have most of the other 
Laplacian disadvantages.  
 
2.3 Optimization Based Methods 
 
In optimization based smoothing, nodes are not moved 
based on a heuristic algorithm such as Laplacian 
smoothing, they are moved to minimize a given 
distortion metric. The distortion metrices are related to 
the following - 
max/min included angles of elements, element skew 
value, element aspect ratio, element area, element 
edge length etc. 
 
One of the early optimization techniques was 
developed by Parthasarathy and Kodiyalam [16]. They 
solved a non-linear optimization problem in an effort 
to repair quad-tree and octree meshes. Shephard and 
Georges [17] reported similar findings. Amenta et al 
[1] used linear programming techniques to solve 
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triangular meshes locally. Jacquotte and Coussement 
[11] developed an optimization based approach for 
both 2D and 3D structural grids. Freitag et al [6] 
proposed a local optimization technique for 2D 
triangular meshes that can serve as the core of an 
efficient parallel algorithm. Later, Freitag and Oliver-
Gooch [7] extended that to 3D grids. These methods 
produced extremely good quality meshes but involved 
element repair work like edge-swapping, bad element 
collapse etc. Moreover the efficiency of these 
optimization based smoothers are about five to 40 
times slower than Laplacian smoothing. Both Freitag 
[8] and Canann et al [4] later, combined several smart 
Laplacian methods with optimization-based 
techniques to create hybrid algorithms to improve 
efficiency. These methods, however, fail to recognize 
and preserve mapped meshes. 
 
2.4 Non-Laplacian Methods 
Non-Laplacian, physics-based or non-iterative, direct 
smoothing algorithms have also emerged in the recent 
past. Lohner et al [15] used a spring mounted system 
between nodes to smooth. Shimada [18] in his bubble 
packing model proposed a method where close nodes 
repel and distant ones attract each other. Bossen and 

Heckbert [3] proposed an exponential function with 
similar properties. These models work in 2D space 
and are not general purpose. A recent direct, non-
iterative approach [2] computes  artificial stiffness 
matrices for the mesh to smooth and tries to minimize 
the strain-energy of the system. While the results are 
interesting, such methods tend to loose their 
computational advantage for large models. Tam and 
Armstrong[19] developed an integer programming 
based mesh control algorithm for mapped quadrilateral 
and hexahedral meshes. This method works on a 
collection of connected subregions and is quite special 
purpose. Zhou and Shimada [20] have recently 
proposed an angle smoother in 2D that tends to mount 
torsion springs between nodes and minimize the 
system energy. Results prove its merit on certain 
concave domains and mixed meshes. Winslow 
smoothing is another efficient technique to reposition 
nodes of predominantly structured elliptic meshes. 
Knupp's [21] investigation in this area provides 
important results. Knupp [22] in another recent paper 
on mesh smoothing of unstructured quad meshes, 
proposes "condition numbers" as a good yardstick for 
measuring mesh quality. 
 

 
 
3. PROBLEM STATEMENT 
 
An extensive study of mesh smoothing algorithms in 
open literature, proves that there is still no one grid 
smoothing technique that can work on both 2D and 3D 
mixed shell meshes to produce good quality elements, 
give a reasonable control to the user, preserve mapped 
meshes, not produce inverted elements and yet has an 
efficiency that compares to Laplacian smoothing. 
  
The present paper, in an effort to fill the gap existing 
in mesh smoothing literature, proposes a new 
variational shell mesh smoothing technique in 3D 
space that symbiotically combines old and some new 
methods. The variational algorithm smoothes each 
node according to a specific smoothing technique. The 
smoothing method selection depends on nodal valency 
and connectivity pattern of the concerned node and is 
largely postulated based on the author's experiments 
on different smoothing techniques on a variety of 
mesh patterns. The algorithm has the following 
properties  
 
• It is iterative 
• Works on 1D, 2D and 3D space 
• Almost as efficient as Laplacian smoothing 
• Gives several controls to the user 

• Does not destroy mapped/structured meshes or 
mesh regions 

• Does not produce inverted elements 
• Does not move boundary nodes, or nodes on hard 

points or nodes with loads 
• Improves element included angles, average 

element skew and hence mesh quality 
• Many users handling geometry-associated 

meshes desire to move nodes off the surface in an 
effort to reduce element warp and skew. For 
geometry associated meshes, this algorithm 
would allow the user to move nodes off the 
surface within a desired tolerance, if needed. 

• Uses different smoothing method for each node 
in the mesh 
1. An incenter-based approach for triangles 
2. Isoparametric-Laplace for general quad only 

meshes 
3. Equipotential (Winslow) smoothing for 

mapped regions 
4. Combined incenter and Laplacian smoothing 

for free mixed meshes 
5. Does a quick region check for each node 
6. Does an smart interior angle screening 

(optional) 
7. Constrains the node to move within a 

specified tolerance (optional) 
 

 
 
 
 

 

 
 
 
 
 



 
 

 
 

4. PROPOSED VARIATIONAL 
SMOOTHING MODEL 
 
The governing equation according to the proposed 
algorithm, for repositioniong node i connected to N 
elements, can be written as  
        N 
Pi' = ∑ Fn(C,V) * Ωn (C,V)    (1)                                                     

The hybrid smoother uses various repositioning 
schemes for different types of mesh units. These 
schemes are disussed below. 

        n = 1 

where Pi'         = New position of node i, 
          Fn    = Variational weight factor for n-th 
element 
          Ωn        =  Positional function for  n-th element 
          C denotes the connectivity pattern of the node, 
while V indicates its valency 

 
 
Scheme A: Isoparametric-Laplace smoothing 
 
Conventional Laplacian methods tend to ignore the 
effect of neighboring nodes that are not directly 
connected to the node-to-smooth. Furthermore, being 
heuristic and completely independent of element 
topology, these techniques do not guarantee low 
skewness for quad elements. This is a strong 
requirement for most structural engineering 
applications. Isoparametric mesh generation 
fundamentals, derived from the shape functions of 
quadrilateral isoparametric elements [5], predict 
location of nodes connected to quadrilateral elements. 
This technique makes a concious effort to generate 
grids that adequately represent bounding contours and 
tend to produce squarish quad elements that have low 
skew. When this technique is combined with 
Laplacian grid generation procedures, a more uniform 
mesh results that have a lower skew value than 
ordinary Laplacian grids. Such an  Isoparametric-
Laplacian method is proposed here as a mesh 
smoothing technique for n-quad connections where n 
!= 2 or 4. A typical n-quad grid is shown in Fig 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: A n-quadrilateral connection (n != 2,4). 
i-j-k-l denotes an average quad. i is the node 
to be smoothed. 
 
 

From the origin of the isoparametric co-ordinate 
systems for quadrilateral elements, the new location of 
node i as shown in Fig I can be expressed as  
 
               1            N 
Pi' =  ------------    ∑ Wn (Pnj  + Pnl - rPnk)  ( 2 ) 
           N(2 – w)     n = 1 
 
where the variational weighting factor and the 
positional function for each element can be expressed 
as 
 
                   Wn            
Fn =        ------------ ;  Ωn = (Pnj  + Pnl - rPnk) (2a) 

  N(2 – r)      
 
N is the no of elements connected to node i 
i-j-k-l represents an average connected quad 
r is the coupling factor between Laplacian and 
isoparametric methods 
Pnj, Pnk, Pnl, represent the position vectors of the j-th, 
k-th and l-th nodes of the n-the connected quad 
respectively 
Pi’ represent the new location of the node to smooth 
Wn represent weight factors for each connecting 
element n such that 
  N 
Σ  Wn  = 1.0; 
n=0 
The weight factors can be constructed in numerous 
possible ways. Some popular examples are length-
weighing, area-weighing, weighing elements based on 
the included angle they make at the node concerned, 
etc. 
Note that when r = 0, equation (1) reduces to Laplace 
smoothing. When r = 1.0, a pure isoparametric grid is 
produced with quad elements showing very low 
skewness, but the nodal lines of the mesh become zig-
zag. Experience with scheme has proven that r = 0.5 
results in good quality meshes with an overall 
skewness that is almost invariably better than the 
Laplacian variants.  
Figures (2a-2c) demostrate some of the aspects of the 
isoparametric-laplacian smoothing scheme discussed 
above. As is evident from figure 2a, the simple 
Laplacian smoother just a fairly good job smoothing  

l 
k

i 
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the 5-valent quad connection but the iso-laplace 
method produces better quad included angles. The 
isoparametric smoother, on the contrary, tends to 
produce  a lot more skew elements while trying 
preserve quad-shapes.  
 

 
 
 
 
 

 
   

 
Fig 2a.  Laplace Fig 2b. Isoparametric  Fig 2c. Iso-Laplace                 

Dark smoothed mesh overlaying a thinner original mesh. 
 
 

 

Scheme B: A new Incenter-Based 
Smoother 
 
This scheme is used for triangles only. Fig 3 shows the 
a spring-mounted system where the node-to-smooth is 
assumed to be connected by springs to the incenters of 
the connected triangles. An energy minimization 
similar to Laplace smoothing leads to the following 
expressions. 
 
The new position of node i is obtained as 
 
                N 
Pi

' = Pi + ∑ Wn(Pn  - Pi) …..( 3 )    where  
                n= 1  
 
Pi (x, y, z) is the position vector of node i 
Pn(x, y, z) is the incenter vector of element n 
 
N represents the total number of elements connected 
to node i. The weighing factors Wn account for the 
initial stiffness of the springs (i.e the effect of initial 
position of node i). Equation (2) is ambivalent with a 
length weighted Laplacian method. The weight 
factors, in this case, can be computed from the length 
of the incenter vectors as  
 

            || Vn || 
Wn =        (3a)  
           N 
           ∑ || Vn ||  
          n=1 
 
 
where Vn =   Pn- Pi       (3b); Vn is the distance 
from the concerned node to the incenter of the n-
th element.  
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Fig.4a-c illustrate the effectiveness of the proposed 
algorithm in improving element included angles. 
Smoothing results are shown for a unit mesh 
comprising three triangles connected to a single node. 
 
 

 
 
Fig 4a. Three triangles connected to one 
interior node. 
 
 
 

 
 
 
Fig 4b. After Laplace smoothing. 
 
 

 
 
Fig 4c. After incenter smoothing. 
 

 
 
The mininum and maximum angles are compared in Table 1. 
 
Table 1. Comparison of element included angles 
Smoothing Method Minimun Element Angle Maximum Element Angle 
Original Mesh 3.7 171.2 
Laplacian smoothing 17.3 137.6 
Angle Smoothing [20] 16.9 133.2 
Proposed variational smoothing 17.4 125.7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Scheme C: Equipotential smoothing  
 
This scheme applies to nodes that are connected to n 
quads (where n = 4) or has 8 neighboring nodes. Fig.5 
depicts a node connected to 4 quadrilateral elements. 
Neighboring nodes 1,2..8 are shown. 
 
The governing equation for equipotential  (Winslow) 
smoothing can written for node i  as 
 
αPiξξ  - 2βPiξη  + γPiηη = 0;    (4) 
 
where ξ,η are logical variables that are harmonic in 
nature, while α, β, γ  are constant coefficients that 
depend on the problem. 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.5:  A typical four-quad grid c
node i

From Eqn 1 & 4, after some simplification, one 
obtains an equation similar to eqn. 3 that describes the 
new location of the node to smooth, where N = 8. The 

weighing factors of the 8 neighboring 
by 

 
 
W1=-β/2,W2=α,W3=β/2,W4=γ,W5=-β/2,W6=α,W7=β/2,W8=γ  (4a)   

where  

α = xp
2 + yp

2 + zp
2           (4b)

β = xpxq + ypyq + zpzq      (4c)  
γ = xq

2 + yq
2 + zq

2            (4d)  and 
 
xp = (x2 -x6)/2,   yp = (y2 - y6)/2,   zp = (z2 - z6)/2       (4e) 
xq = (x8 -x4)/2,   yq = (y8 - y4)/2,   zq = (z8 - z4)/2       (4f) 
 
 
Scheme D: Combined Incenter-IsoLaplacian smoothing for mixed meshes 
 
This scheme applies to nodes that are connected to 
both quads and triangles and do not satisfy the 
Winslow criteria. For such connections, a 
Isoparametric-Laplacian approach is used for quads 

and the incenter-based smoothing appr
triangles. The region check is turned
mesh distortion in concave domains. 

 
 
 
Scheme E: Quad meshes with bivalent nodes 
 
Sometimes we come across a node with a rare valency 
of 2 (connected to 2 quads). One of these quads is 
invariably an arrowhead shaped element which is 
impossible to cure by any smoothing method. For such 

bivalent nodes, the node to smooth is d
two connecting quads are merged to fo
quad as shown in Fig.6 a & b. 
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Fig 6a. Elements with bi-valent node  
 

Fig 6b. Bivalent-node removed. Elements 
merge

 
 
Angle Check 
 
During smoothing, element angles connected to the 
concerned node are checked to see if they are within 
the angle limits, or  the overall skewness of the 
connected elements are checked. If all elements 
connected to the node pass the user-defined criteria, 
the concerned node is not smoothed. This feature is 
optional, and when turned on ,the smoother works like 
a smart Laplacian. Node i, is thus smoothed, only if 
any included angle of any connected element fails the  
user-set angular limits at this node. This condition can 
be mathematically expressed as 
 

σ (Pi) ; if θmax < αji || j = 1, N < θmin     (5) 
where  
σ is the smoothing operator 
σ (Pi) indicates, node i is smoothed 
N denotes number of elements connected to node i 
θmax, θmin are the element allowable angular limits 
αji denotes the included angle of element element 
j at node i.

 
Constrained Movement 
 
Since this smoother is most beneficial to users who are 
trying to modify existing meshes, add features and 
build geometry from them, many users would prefer 
the to move nodes in a constrained manner. For 
example, they may not want their mesh nodes to move 

off their current location by more than a certain 
amount. Once the user specifies such a node 
movement tolerance dTol, the nodes are moved from 
their present location such that they always reside 
within the sphere of radius R = dTol as shown in Fig.7 
a & b.  

                                                                      

The new location of node i (Pi”) is given by 
Pi” = rPk + (1 – r)Pi   ;   for  r  < 1    (6a) 
Pi” = rPk ; for r ≥ 1                            (6b) 
where 
          dTol 
r =      and                          (6c) 
       || Pk – Pi || 

Pi , Pi” , Pk are the node locations before 
smoothing, after constrained smoothing and after 
unconstrained smoothing respectively. 
 
 

Arrow-headed 
element 

Bi-valent nodes



 
 
Region Check 
 
While the hybrid spring system tries to reposition the 
node so as to relax the worst angles of the connected 
elements, in certain situations, it is still  bound to 
suffer from the so-called "Laplacian distortion" effect, 
where, interior nodes might move outside concave 
boundaries. To ensure that the moved node lies inside 
the domain of its neighbors, a region, is defined by a 
bounding box of the neighbors. The node to smooth 
should not be moved outside this bounding box.  

 
 
Let the bounding box of the neighbors be expressed as 
Ω(X1, X2, Y1, Y2, Z1, Z2)             (7a) 
 
where 
 
X1 = Xmin of all the initial X's of the centroid (for 
quads)/incenters (for triangles) of the neighboring 
elements 

X2 = Xmax of all the initial X's of the centroid  (for quads)/incenters (for triangles) of the neighbors 
 
  Y1, Y2, Z1 and Z2 are expressed identically 
 
For the node movement to be valid the following 
conditions need to be met 
New node location should lie inside bounding box Ω 
(X1, X2, Y1, Y2, Z1, Z2) 
 
X2  ≥ Px  ≥  X1 
Y2  ≥ Py  ≥ Y1 
Z2  ≥ Pz  ≥  Z1  (7b) 
 
where Px,Py,Pz denote the new coordinates of the 
node. 
 
 
Fig.8 shows a 2D quad-grid where the node to smooth 
is constrained to move within the bounding box of the 
three centroids of the three quads. 

 

 

Convergence 
Since most of the methods used in the variational 
smoothing algorithm are heuristic in nature, the 
error at each step can be defined by the root 
mean square of the positional disturbance of the 
mesh nodes. This can be expressed from 
equation (1) as εj = ∑n(Pi' - Pi)2/n   
                                   i = 0   

 
for the j-th iteration of a mesh that has n nodes. The 
smoother is assumed to have converged when the 
following criteria is met  εj - εj-1  < 0.01ε1 . 
 
                              



  
The variational logic is controlled by two factors: the valency of the node to smooth, and its element connectivity 
pattern. Table 2 can best express the rule set adopted. 
 
 
 
 
Table 2: Variational smoothing logic 
 
Valency of node to 
smooth 

No of Quads No of Trias Smoothing Method 

2 2 --- Scheme E: node 
removed, 2 quads are 
combined into one 

3 3 ---- SchemeA: 
Isoparametric-Laplace 

4 4 ---- Scheme C: 
Equipotential 

n; n > 4 n ---- Scheme A: 
Isoparametric-Laplace 

n; n > 2 
n != 8 

---- n Scheme B: 
Incenter-based 

8 ---- 8 Scheme C: 
Equipotential 

n; n > 2 
n = k + l 

k l Scheme D: 
Incenter-IsoLaplace 

 
 
 
 
5.  RESULTS AND DISCUSSION 
 
Several unitary and large size shell meshes are 
smoothed using the proposed model. Results are 
compared with simple Laplace or smart-Laplace 
smoothing cases or other existing smoothing 
algorithms. The ability of the smoother to clean 

grossly distorted meshes, maintain stability in concave 
and triangular regions, preserve mapped or structured 
meshes, improve interior angles and skewness, and 
converge efficiently is studied in the following 
subsections.

 
 

 

5.1 Ability to preserve mapped-meshes 
 
Most smoothing algorithms do not recognize 
mapped/structured grids. The proposed angle 
smoother employs a Winslow smoothing algorithm 
[12] for nodes that are connected to 4 quadrilaterals or 
8 triangles. The benefits of the variational smoother 
are illustrated in Fig 9a-c. 
 

 
 
Fig 9a. A 4X6 mapped mesh on a concave 
region. 

 



 
 
Fig 9b. After  Laplace Smoothing. The 
structured nature of the mesh is lost. Edge 
elements have almost collapsed. 
 
 

 
 
Fig 9c. Result of  variational smoothing. All 
nodes are equipotentially smoothed resulting 
in a structured or mapped mesh pattern. No 
element is collapsed. 

 
 

 

5.2 Ability to Work On Concave Boundaries
 
 
On concave domains Laplacian smoothing often 
pushes points outside the mesh boundary. The 
proposed angle smoother prevents that either by 
employing a Winslow in such regions if the mesh 
qualifies for it or by a region check. Fig.9a-c show a 
5X6 mapped mesh distorted by Laplacian smoothing 
but completely preserved by the current method. 

Distortions caused by Laplacian smoothing in concave 
domains by throwing nodes outside the mesh region 
and creating inverting elements can also be prevented 
by the region check feature of the variational 
smoother. 

 

 
  
Fig.10a. A 5X6 mapped all quad mesh   Fig.10b. Result of Laplace smoothing.  
in a concave region. Nodes move outside the boundary resulting 

in inverted elements. 
 
 

Fig.10c. Result of proposed variational smoothing. 
No nodes go outside the boundary. The mesh has 

not been moved around much. 



 
  
5.3 Ability to Smooth Quad-dominant meshes
  
Fig.11 shows a portion of a carbody panel that has an 
initial distorted mesh which is cleaned by the 
variational smoother as shown in Fig.12. Table 3 
compares the performance of the angle smoother to 
smart-Laplacian smoothing. Once again , it is 
observed that the number of elements failing included 
angle check for the angle smoother is half of that 
produced by smart-Laplacian smoothing.  
 

 
 
Fig.11: Portion of a carbody panel. Quad 
dominant mesh, partially mapped mesh with 
high-skew elements. 
 

 
 
 

 
 
Fig.12: Mesh smoothed by the new variational 
smoother. All elements are smoothed. 
Resultant mesh shows mapped grids have 
been preserved, most high skew elements 
cured. 

 
 
Table 3. Comparison of mesh quality for a carbody panel 
 
Smoothing Method No. of elm 

failing warp 
check 

No. of elem failing 
minimum Jacobian 
check 

No. of elem failing 
skew check 

No. of elem failing 
included angle 
check 

Original mesh 37 89 241 156 
After Laplace smoothing 5 2 89 31 
After variational smoothing 1 2 63 15 
 
 
 
 
6. CONCLUSION 
 
It has been clearly proven by several past researches, 
that Laplacian smoothing or its variants have certain 
inherent shortcomings that can not be cured by a 
single alternate smoothing algorithm. More over,  
most schemes, are restricted to either two-dimensional 
or monolithic grids. The proposed variational 
smoother uses a hybrid smoothing mechanism where 
different smoothing (both conventional and 

innovative) algorithms are used for each node 
depending on its connectivity. For all triangular 
meshes, an incenter-based method is proposed that 
performs better and less destructive than the Laplacian 
method. For all quadrilateral meshes, an 
Isoparametric-Laplace method is used that leads to 
faster convergence and lower skewness. Winslow 
smoothing is employed for mapped-grid units that 



preserves structured grids and is non-destructive in 
concave domains. The method is made more flexible 
by adding an user control on the element check criteria 
(included angle or skew) and is further reinforced by a 
quick region check that often ensures valid meshes in 

skew and concave contours. Several results exemplify 
the performance of the proposed variational smoother 
in comparison to a conventional Laplacian , smart-
Laplacian and other schemes. 
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